

Artículo de revisión

Relación entre el microbioma vaginal y las infecciones vaginales recurrentes: factores de riesgo y enfoques terapéuticos emergentes

Relationship between vaginal microbiome and frequent vaginal infections: risk factors and emerging therapeutic approaches

Micaela Salomé Núñez Carrillo 1

Sheyla Nicole Armas Robalino ¹

Santiago Sebastián Ortiz Terreros ¹

Sylvia del Pilar Nuñez Arroba 1

¹ Universidad Regional Autónoma de los Andes. Ambato, Ecuador.

Autor para la correspondencia: ma.micaelasnc65@uniandes.edu.ec.

Recibido: 31/07/2025. Aprobado: 10/09/2025.

Editor: Yasnay Jorge Saínz.

Aprobado por: Silvio Emilio Niño Escofet.

RESUMEN

El microbioma vaginal juega un papel crucial en la salud ginecológica, influye además en la incidencia y el manejo de infecciones vaginales recurrentes. Estas infecciones, a menudo causadas por desequilibrios microbianos, afectan significativamente la calidad de vida de las mujeres. Este estudio explora la relación entre el microbioma vaginal y las infecciones recurrentes, además destaca las intervenciones terapéuticas más recientes y efectivas. El presente trabajo es una revisión bibliográfica de corte cualitativo, basado en la recopilación y análisis de literatura científica, se utilizaron términos de búsqueda combinados en bases de datos científicas

ABSTRACT

The vaginal microbiome plays a crucial role in gynecological health, influencing the incidence and management of recurrent vaginal infections. These infections, often caused by microbial imbalances, significantly affect women's quality of life. This study explores the relationship between the vaginal microbiome and recurrent infections and highlights the most recent and effective therapeutic interventions. This paper is a qualitative literature review, based on the collection and analysis of scientific literature, using combined search terms in scientific databases such as PubMed, Scopus, Web of Science and Google Scholar. Recent research suggests that a healthy vaginal microbiome, characterised by a

como PubMed, Scopus, Web of Science y Google Scholar. Investigaciones recientes sugieren que un microbioma vaginal saludable, caracterizado por la predominancia de lactobacilos, ofrece protección contra patógenos como *Candida albicans* y *Gardnerella vaginalis*. Sin embargo, factores como el uso de antibióticos, la higiene excesiva y alteraciones hormonales pueden alterar este equilibrio, ya que favorecen el crecimiento de bacterias patógenas y la recurrencia de infecciones. En este contexto, los enfoques terapéuticos emergentes, como la administración de probióticos y la modulación del microbioma, muestran promesas en la prevención y tratamiento de estas infecciones.

Palabras clave: microbioma vaginal, infecciones recurrentes, Lactobacilos, terapias emergentes, prevención

predominance of lactobacilli, offers protection against pathogens such as Candida albicans and Gardnerella vaginalis. However, factors such as antibiotic use, excessive hygiene and hormonal disturbances can upset this balance, favouring the growth of pathogenic bacteria and the recurrence of infections. In this context, emerging therapeutic approaches, such as probiotic administration and modulation of the microbiome, show promise in the prevention and treatment of these infections.

Keywords: vaginal microbiome, recurrent infections, Lactobacilli, emerging therapies, prevention

Introducción

El microbioma vaginal es un microecosistema complejo y dinámico, que sufre fluctuaciones constantes durante el ciclo menstrual femenino durante toda la vida de la mujer. Un microbioma vaginal saludable está dominado por *Lactobacillus* que producen varios compuestos antimicrobianos. (1) La mucosa vaginal adquiere oxígeno, glucosa y otros nutrientes de los tejidos submucosos subyacentes a través de la difusión debido al suministro limitado de sangre. Esto establece una condición de hábitat relativamente anaeróbico. (2) La vagina alberga una comunidad microbiana compleja que subsiste en una relación simbiótica con el huésped. Así, el entorno autóctono, los microorganismos y sus genomas componen conjuntamente todo el hábitat, también conocido como microbioma vaginal. (3) El microbiota vaginal más protector, "óptimo", se caracteriza en términos generales por un predominio de *Lactobacillus spp*. productores de ácido láctico. (4)

Los *Lactobacillus spp.* protegen contra patógenos invasores. Sin embargo, un microbioma "normal" suele ser difícil, si no imposible, de caracterizar; dado que varía en respuesta a

numerosas variables, incluido el embarazo, el ciclo menstrual, el uso de anticonceptivos, la dieta, la etnia y el estrés.⁽⁵⁾ Un microbioma repletado de *Lactobacillus* se ha relacionado con una variedad de resultados adversos para la salud vaginal, incluido el parto prematuro (PTB), la vaginosis bacteriana (VB) y entre otras infecciones vaginales.

Los dos últimos de estos, también se han asociado con prácticas de higiene íntima femenina, muchas de las cuales se practican sin ninguna evidencia de beneficios para la salud.⁽⁵⁾ La práctica más estudiada es la ducha vaginal, causante de disbiosis vaginal y predisponen a las mujeres a la VB, la enfermedad inflamatoria pélvica y el parto prematuro. Sin embargo, se sabe poco sobre el impacto que tienen las prácticas de higiene íntima y los productos asociados en el microbioma vaginal.⁽⁶⁾

Las infecciones vaginales son el problema de salud más frecuente en la mujer. El diagnóstico inadecuado, los tratamientos incorrectos y la resistencia a los antibióticos son las principales causas de los resultados insatisfactorios del tratamiento antimicrobiano convencional para estas infecciones. La vaginosis bacteriana es la infección vaginal predominante en todo el mundo, se caracteriza por un aumento del pH vaginal, típicamente ≥ 4,5, aumento del flujo vaginal, olor a pescado y reemplazo de lactobacilos vaginales con bacterias principalmente anaeróbicas.⁽⁷⁾ De hecho, las mujeres diagnosticadas con vaginosis bacteriana tienen hasta 1000 veces más bacterias anaeróbicas que las mujeres sanas. El microbiota vaginal de estas pacientes contiene típicamente una gama más amplia de especies, que las encontradas en individuos sanos, siendo *Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis, Peptostreptococcus* y *Prevotella* las que suelen ser prevalentes.⁽⁸⁾

Las infecciones vaginales por levaduras (también llamadas vaginitis por levaduras o candidiasis vulvovaginal) se caracterizan por secreción vaginal blanca, picazón local, ardor, dolor y molestias durante las relaciones sexuales y la micción. Más del 90 % de los casos se deben a *Candida albicans*, pero, recientemente, el número de infecciones debidas a especies de *Candida* no *C. albicans*, como *C. glabrata*, *C. krusei*, etc., ha aumentado significativamente y se vuelve problemático.⁽⁹⁾

La realización de la presente investigación es significativa, ya que, las infecciones vaginales recurrentes son un desafío clínico considerable, a causa de esta se afecta la calidad de vida de las mujeres y con un alto costo en términos de tratamiento y atención médica. A pesar de la disponibilidad de tratamientos, las tasas de recurrencia siguen en aumento, lo que destaca la urgencia de explorar alternativas basadas en el equilibrio microbiano vaginal. Este artículo tiene como objetivo exponer la relación que existe entre el microbioma vaginal y las infecciones vaginales recurrentes.

Método

La presente revisión bibliográfica está basada en artículos científicos publicados en los últimos 5 años. El diseño de este estudio es cualitativo, basado en la recopilación y análisis de literatura científica.

Se incluyeron estudios originales, revisiones sistemáticas y metaanálisis que cumplieran con los siguientes criterios de inclusión:

Criterios de inclusión:

- Artículos publicados entre 2019 y 2024.
- Investigaciones que exploren el microbioma vaginal y su relación con infecciones recurrentes.
- Estudios que utilicen técnicas de análisis molecular (como secuenciación de 16S rRNA) para caracterizar el microbioma vaginal.
- Publicaciones en inglés o español.

Criterios de exclusión:

- Estudios que no se centren en el microbioma vaginal o que no aborden infecciones recurrentes.
- Artículos que solo describan infecciones sin considerar el papel del microbioma.
- Publicaciones fuera del período de tiempo especificado.

Para la recopilación de datos, se realizaron búsquedas en las bases de datos PubMed, Scopus, Web of Science y Google Scholar, para lo que se utilizaron términos de búsqueda combinados como vaginal microbiome, recurrent vaginal infections, *Lactobacillus* and recurrent infections,

Correo Científico Médico (CCM) 2025; Suplemento

y probiotics in vaginal health, entre otros. Las fuentes primarias fueron artículos científicos revisados por pares, y se incluyeron también algunos estudios de carácter experimental y clínico que contribuyeran a un entendimiento más profundo del tema.

Una vez seleccionados los artículos relevantes, se procedió a una evaluación cualitativa de los mismos. Cada estudio fue analizado en cuanto a sus objetivos, metodologías, resultados y conclusiones. Además, se identificaron patrones comunes en los mecanismos relacionados con el desequilibrio del microbioma vaginal y las infecciones recurrentes.

Desarrollo

A nivel histológico, la vagina es una estructura fibromuscular que presenta tres capas o túnicas principales conocidas como mucosa, músculo y adventicia. La capa mucosa forma numerosos pliegues transversales llamados "arrugas" o pliegues vaginales que, a su vez, presentan dos capas: epitelio escamoso estratificado y lámina propia, un tejido conectivo no adherido que une el epitelio con las capas musculares. ^(7,8) Fundamentalmente, es en este epitelio escamoso donde residen las comunidades de microorganismos, denominada microbioma vaginal.

Composición y funciones del microbioma vaginal en mujeres sanas

En la última década, la exploración del microbiota humano se ha centrado cada vez más en la composición del microbiota vaginal, la diversidad y su impacto en la salud, la reproducción y las enfermedades. Se sabe que el microbiota vaginal consiste en varias bacterias, virus, arqueas, hongos y protozoos. (10) A diferencia del intestino, definir las características del microbiota saludable en el tracto vaginal parece ser menos desafiante, ya que una de las características de una visión vaginal sana es la baja diversidad bacteriana y la alta abundancia de lactobacilos vaginales. Estos lactobacilos juegan un papel fundamental en la interacción con el sistema inmune innato anfitrión, la investigación muestra que la baja abundancia de lactobacilos aumenta el riesgo de varias infecciones vaginales. (11)

Los lactobacilos, producen ácido láctico que crea un microambiente ácido y, por lo tanto, previene el crecimiento excesivo de bacterias potencialmente dañinas. Sin embargo, la definición de microbiota vaginal saludable no es sencilla. La disbiosis vaginal no siempre se

presenta con síntomas y no todas las especies de lactobacilos vaginales son igualmente protectores.⁽¹¹⁾

Predominio de Lactobacillus spp. y su papel protector

Los *lactobacillus spp.* son bacterias anaerobias Grampositivas capaces de colonizar la mucosa vaginal, al impedir el establecimiento o desarrollo excesivo de otros microorganismos que puedan llegar a ser potencialmente patógenos para el huésped. (Ver tabla I) Esta protección se realiza a través de dos mecanismos: (I) por la adhesión específica a las células epiteliales y, (II) por la producción de compuestos con propiedades antimicrobianas. Se ha descrito la capacidad de los lactobacilos de auto agregarse y adherirse al epitelio vaginal a través de glicoproteínas presentes en la superficie de las células epiteliales (i.e. fibronectina) en una unión que es favorecida por un ambiente de pH ácido. (12) Aunque son necesarios más estudios, se piensa que, además del epitelio celular del huésped, también juegan un papel importante las proteínas, carbohidratos, glicoproteínas, ácidos lipídicos y cationes divalentes provenientes de especies del microbiota. (13)

Tabla I. Principales especies de Lactobacillus en la vagina.

Especie	Función principal
Lactobacillus	Producción de ácido láctico y peróxido de hidrógeno, mantiene un pH
crispatus	ácido que inhibe patógenos.
Lactobacillus	Adherencia al epitelio vaginal, forma una barrera física contra
jensenii	microorganismos nocivos.
Lactobacillus	Producción de bacteriocinas que tienen actividad antimicrobiana
gasseri	específica.
Lactobacillus iners	Participación en la estabilidad del microbiota vaginal, aunque su papel
	exacto aún se investiga.

Fuente: Chen X et al. (11)

Producción de ácido láctico, peróxido de hidrogeno y bacteriocinas.

La presencia de ácido láctico es clave para una homeostasis saludable de la vagina y su producción proviene de dos fuentes diferentes: por el epitelio vaginal (principalmente L-lactato

que representa el 20 % del ácido láctico total) y por el microbiota, encargada de metabolizar aproximadamente el 80 % del glucógeno, y produce las dos isoformas del ácido láctico con predominio del ácido D-láctico. (8) Cuando el epitelio escamoso requiere energía en forma de ATP, el glucógeno de las células epiteliales vaginales se convierte en glucosa, luego en piruvato, y de este en ácido láctico, que se libera en el lumen vaginal a medida que el epitelio sufre descamación. (10)

Esta producción de ácido láctico se realiza bajo el control de los niveles de estrógenos presentes en la sangre, ya que estos promueven la maduración y el depósito en las células epiteliales vaginales. Por lo tanto, debido al conocido cambio en la producción de estrógenos a lo largo del ciclo de vida de la mujer, el ecosistema vaginal puede estar sujeto a modificaciones. El segundo y principal mecanismo de producción de ácido láctico proviene del glucógeno que se encuentra en el lumen vaginal, el cual es catabolizado por alfa amilasas para producir maltosa, maltotriosa y alfa dextrinas, las cuales son posteriormente convertidas en ácido láctico, debido a la acción de la deshidrogenasa láctica estimulada por *Lactobacillus*. (15)

La presencia de ácido láctico en el lumen vaginal tiene como consecuencia que el pH vaginal se mantenga ácido, en niveles de aproximadamente 3,5–4,5, lo cual genera un ambiente protector en la mucosa que, parcial o totalmente, inhibe el crecimiento de microorganismos patógenos. (8) Otros compuestos producidos por los lactobacilos que juegan un control secundario en la flora vaginal son el peróxido de hidrógeno (H2O2) y las bacteriocinas. (11,12) Se ha descrito que algunas cepas de lactobacilos vaginales pueden producir H2O2 protegiendo la mucosa contra alteraciones causadas por microorganismos oportunistas, incluidos los causantes de ITS. (16)

Factores internos y externos que causan disbiosis vaginal

La disbiosis del microbiota vaginal, caracterizada por la pérdida de la dominancia de *Lactobacillus* y el aumento de la diversidad microbiana, está estrechamente relacionada con las enfermedades ginecológicas.⁽¹⁷⁾

Factores internos

Entre los factores internos se encuentran las fluctuaciones hormonales a lo largo de la vida de una mujer, como la menarquia, el ciclo menstrual, el embarazo y la menopausia, influyen significativamente en la composición del microbiota vaginal. Durante la menarquia, el aumento de estrógenos promueve el engrosamiento del epitelio vaginal y la producción de glucógeno, por esto favorece el crecimiento de *Lactobacillus*. En la menopausia, la disminución de estrógenos reduce la presencia de *Lactobacillus*, lo cual aumenta la diversidad microbiana y el pH vaginal, en consecuencia puede predisponer a infecciones.⁽¹⁸⁾

Condiciones como la diabetes mellitus pueden alterar el equilibrio del microbiota vaginal. Los niveles elevados de glucosa en sangre proporcionan un ambiente favorable para el crecimiento de microorganismos patógenos, por tanto disminuyen la proporción de bacterias beneficiosas como los *Lactobacillus*.⁽¹⁹⁾ Alteraciones en la respuesta inmunitaria pueden afectar la composición del microbiota vaginal. Un sistema inmunológico comprometido o hiperactivo puede alterar el equilibrio microbiano, permite la proliferación de patógenos y reduce las bacterias protectoras.⁽¹⁹⁾

Factores externos

Por otra parte, los factores externos son el uso de antibióticos puede alterar la microbiota vaginal al eliminar no solo las bacterias patógenas sino también las beneficiosas, como los *Lactobacillus*, lo que facilita la colonización por microorganismos oportunistas y aumenta el riesgo de disbiosis. (19) Prácticas como las duchas vaginales pueden eliminar las bacterias beneficiosas y alterar el pH vaginal, por tanto crea un ambiente propicio para la proliferación de patógenos y el desarrollo de disbiosis. (3) La actividad sexual sin protección y con múltiples parejas es asociado con un mayor riesgo de disbiosis vaginal. El intercambio de fluidos y microorganismos durante las relaciones sexuales puede alterar el equilibrio del microbiota vaginal y facilita la colonización por bacterias no deseadas. (2) El estrés crónico y factores relacionados con el estilo de vida, como la dieta y el consumo de tabaco, pueden influir en la composición del microbiota vaginal. El estrés puede alterar la respuesta inmunitaria y hormonal, afecta el equilibrio microbiano; mientras que una dieta desequilibrada y el tabaquismo pueden modificar el ambiente vaginal y favorecer la disbiosis. (2)

Relación entre la disbiosis del microbioma vaginal y el desarrollo de infecciones recurrentes

Vaginosis bacteriana: alteraciones en la microbiota y recurrencia

La vaginosis bacteriana (VB) es la condición vaginal más frecuente, que afecta al 30 % de las mujeres a nivel mundial. La VB se asocia con un mayor riesgo de una amplia gama de secuelas ginecológicas y obstétricas que incluyen el parto prematuro, el aborto espontáneo y la pérdida de embarazo. La evidencia actual indica que VB es un síndrome polimicrobiano caracterizado por un cambio en la composición del microbiota vaginal de "óptimo" a "no óptimo". Este estado microbiológico no óptimo implica una reducción en los lactobacilos protectores y un aumento en la diversidad bacteriana y anaerobios facultativos y estrictos, incluidas *Gardnerella spp., Atopobium vaginae* y *Prevotella spp.* Si bien los patógenos exactos responsables de VB aún se debaten, un modelo conceptual reciente planteó la hipótesis de que las cepas virulentas de *Gardnerella*, así como *Prevotella bivia* y *A. vaginae*, juegan un papel central. (21)

Candidiasis vulvovaginal recurrente y su asociación con la disbiosis

La candidiasis vulvovaginal es una condición patológica debilitante causada por especies de *Candida*, comúnmente caracterizada por picazón vulvar, ardor, dolor mientras orina y secreción vaginal. (22) La *Candida* es un hongo dimórfico del *Phyla Ascomycota* que habita en los tractos respiratorios, gastrointestinales y genitourinarios de más del 30 % de las personas sanas durante su vida. (23) Las alteraciones en la interacción simbiótica entre el hongo y el ecosistema mucoso están asociadas con disbiosis fúngica leve a moderada, en relación con el área infectada y el estado de salud del paciente. Después de la vaginosis bacteriana anaeróbica, la candidiasis vulvovaginal se considera la segunda infección vaginal más común, que afecta al 75-80 % de las mujeres al menos una vez en su vida. (6) A pesar de la diferente patogénesis, los síntomas de la vaginitis fúngica y bacteriana a menudo se confunden, por este motivo resulta que las mujeres tengan un diagnóstico inexacto y una calidad de vida reducida. (24)

La candidiasis vulvovaginal se considera un trastorno multifactorial, donde es probable que una composición de microbiota vaginal desequilibrada, los factores predisponentes del huésped y la genética, así como las cepas de *Candida*, favorezcan el inicio de la enfermedad (Figura 1). El microbioma vaginal está comúnmente habitado tanto por las comunidades bacterianas,

principalmente representadas por el género *Lactobacillus*, como *L. Iners* y *L. crispatus*, y las contrapartes de levadura.⁽²⁵⁾

Las especies de *Candida* son los organismos fúngicos más abundantes del microbioma vaginal; Por lo tanto, pueden ser agentes causales de infecciones vaginales en algunas Condiciones. (26,27) Varios factores pueden alterar el microbiota vaginal en pacientes con candidiasis vulvovaginitis: en primer lugar, los cambios en la comunidad de *Lactobacillus* productora de H2O2 (por ejemplo, *L. acidophilus, L. gasseri* y *L. vaginalis*), y, en segundo lugar, una condición de estrógeno alta (es decir, terapia de reemplazo de ácido, fase de lúteo o embarazo). La fase lútea o el embarazo influye en el equilibrio del microbioma vaginal debido a cambios en la composición de los eicosanoides (Tabla II). (27) Se ha demostrado que estas condiciones pueden alterar la homeostasis entre la tolerancia inmunológica y la respuesta inflamatoria, esto favorece la adherencia de *Candida* al epitelio mucoso, el crecimiento anormal de la levadura y un mayor riesgo de infecciones por *Candida*. (25)

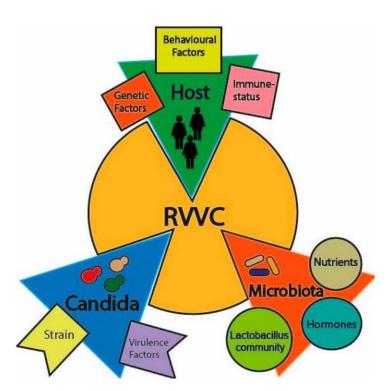


Figura 1. Los factores que contribuyen al inicio de la candidiasis vulvovaginal recurrente.

Fuente: Diletta et al. (22)

Tabla II. Resumen de los factores microbiológicos que actúan en la detección de quórum del microbiota vaginal, con efectos potencialmente estimulantes o inhibitorios sobre el crecimiento/cambio morfológico de *Candida*.

Factores	Efectos Potenciales sobre el Crecimiento de Candida				
Comunidad de Lactobacillus	Inhibitorio				
Fuentes de carbono:					
Glucosa	Estimulante				
Lactato	Potencialmente inhibitorio				
Ácidos grasos de cadena corta (SCFAs):					
Acetato	Inhibitorio				
Butirato	Inhibitorio				
Propionato	Inhibitorio				
Eicosanoides:					
Prostaglandina E2	Estimulante				
Tromboxano B2	Estimulante				
Concentración de estrógenos	Estimulante				
pH bajo (pH: 4–4.5)	Potencialmente inhibitorio				

Fuente: Diletta et al. (22)

Tricomoniasis y cambios en el microbiota vaginal

El Protozoo *Trichomonas vaginalis* es un parásito del tracto urogenital humano y es responsable de la tricomoniasis, la enfermedad de transmisión sexual no viral más común. La presentación clínica de la tricomoniasis en las mujeres puede variar de la vaginitis asintomática a severa, mientras que los hombres tienden a ser principalmente portadores asintomáticos del protozoo. (28) La infección de *Trichomonas vaginalis* se asocia con un mayor riesgo de infección por VIH y puede conducir a resultados adversos del embarazo, como el parto prematuro y el bajo peso al nacer. Además, la tricomoniasis se ha asociado con un mayor riesgo de cáncer de cervical y próstata. (29) Curiosamente, la presencia del protozoo en las mujeres puede alterar profundamente la composición del microbiota vaginal.

El ecosistema vaginal humano de las mujeres de la edad fértil, se caracteriza por la presencia de una población compleja de microorganismos aeróbicos y anaeróbicos que establecen interacciones entre sí y con el huésped en un sistema fisiológicamente dinámico. Otro aspecto importante que caracteriza la tricomoniasis es un pH más alto observado durante la infección que el de la vagina sana, que normalmente varía entre 2,8 y 4,2.⁽¹³⁾

Dado que el pH bajo se debe principalmente al metabolismo ácido de los lactobacilos, la reducción de la comunidad de lactobacilos asociado con la tricomoniasis conduce a un aumento de pH, crea un entorno más favorable para el crecimiento de T.vaginalis y la patogenicidad.⁽¹¹⁾ De hecho, el Protozoo ejerce su efecto citopático a través de la liberación de proteínas formadoras de poros, cuya actividad depende estrictamente de un pH con un óptimo de 5,8. ⁽²⁹⁾ A este respecto, la reducción de los lactobacilos observados durante la tricomoniasis podría ser parte de una estrategia dirigida a la creación de un entorno que mejor se adapte a los protozoos.

Conclusiones

El microbioma vaginal es clave para la salud ginecológica; cuando se altera, puede causar infecciones recurrentes. La presencia de *Lactobacillus spp*. resulta esencial, ya que produce ácido láctico, peróxido de hidrógeno y bacteriocinas que mantienen un pH ácido y controlan microorganismos dañinos. La disbiosis vaginal, marcada por la reducción de lactobacilos y el aumento de microorganismos anaerobios, favorece infecciones como la vaginosis bacteriana, candidiasis vulvovaginal y la tricomoniasis. Factores internos (cambios hormonales, diabetes) y externos (antibióticos, prácticas de higiene inadecuadas, actividad sexual) pueden desestabilizar el microbioma vaginal. Aunque existen tratamientos, la alta recurrencia de infecciones subraya la importancia de alternativas como los probióticos para restaurar el equilibrio microbiano.

Referencias Bibliográficas

1. Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol. 2021 [citado 09/08/2023];11:631972. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC8058480/

2.Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host–Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol. 2019 [citado 06/08/2024];27(12):982-996.

Disponible en: https://www.cell.com/trends/microbiology/abstract/S0966-842X(19)30190-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0966842X19 301908%3Fshowall%3Dtrue

3.Peebles K, Velloza J, Balkus JE, McClelland RS, Barnabas RV. High Global Burden and Costs of Bacterial Vaginosis: A Systematic Review and Meta-Analysis. Sex Transm Dis. 2019 [citado 09/05/2023];46(5):304-311. Disponible en:

https://journals.lww.com/stdjournal/abstract/2019/05000/high_global_burden_and_costs_o f bacterial.5.aspx

4.Tuddenham S, Gajer P, Burke AE, Murphy C, Klein SL, Stennett CA, *et al*. Lactobacillus-dominance and rapid stabilization of vaginal microbiota in combined oral contraceptive pill users examined through a longitudinal cohort study with frequent vaginal sampling over two years. EBioMedicine. 2023 [citado 09/05/2023];87:104407. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC9792759/

5.Holdcroft AM, Ireland DJ, Payne MS. The Vaginal Microbiome in Health and Disease—What Role Do Common Intimate Hygiene Practices Play? Microorganisms. 2023 [citado 03/05/2024];11(2):298. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC9959050/

6. Hills RD, Pontefract BA, Mishcon HR, Black C, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019 [citado 06/08/2024];11(7):1613. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6682904/

7.Superti F, De Seta F. Warding Off Recurrent Yeast and Bacterial Vaginal Infections: Lactoferrin and Lactobacilli. Microorganisms. 2020 [citado 09/06/2023];8(1):130. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7023241/

- 8. Kalia N, Singh J, Kaur M. Immunopathology of Recurrent Vulvovaginal Infections: New Aspects and Research Directions. Front Immunol. 2019 [citado 09/06/2024];10:2034. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6722227/
- 9. Donders G, Sziller IO, Paavonen J, Hay P, de Seta F, Bohbot JM, et al. Management of recurrent vulvovaginal candidosis: Narrative review of the literature and European expert panel

opinion. Front Cell Infect Microbiol. 2022 [citado 03/08/2024];12:934353. Dispinible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC9504472/

10.Lehtoranta L, Ala-Jaakkola R, Laitila A, Maukonen J. Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Front Microbiol. 2022 [citado 05/07/2023];13:819958. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC9024219/

11.Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol. 2020 [citado 08/06/2023];202(8):2147-2167. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC7284171/

12.Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol. 2021 [citado 08/06/2023];11:631972. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC8058480/

13. Moosa Y, Kwon D, de Oliveira T, Wong EB. Determinants of Vaginal Microbiota Composition. Front Cell Infect Microbiol. 2020 [citado 08/06/2023];10:467. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC7492712/

14.Baud A, Hillion KH, Plainvert C, Tessier V, Tazi A, Mandelbrot L, *et al*. Microbial diversity in the vaginal microbiota and its link to pregnancy outcomes. Sci Rep. 2023 [citado 08/06/2023];13(1):9061. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC10239749/

15. Abou Chacra L, Fenollar F. Exploring the global vaginal microbiome and its impact on human health. Microb Pathog. 2021 [citado 08/06/2023];160:105172. Disponible en:

https://www.sciencedirect.com/science/article/abs/pii/S0882401021004460?via%3Dihub

16. Khryanin AA, Knorring GY.Vaginal microbiome and the role of probiotics in maintaining women's health. Pharmateca. 2024 [citado 08/12/2024];31(5): Disponible en:

https://journals.eco-vector.com/2073-4034/article/view/637421

17.Ahmed M, Admassu D, Abate D. Bacterial Vaginosis and Associated Factors Among Pregnant Women Attending Antenatal Care in Harar City, Eastern Ethiopia. Infect Drug Resist. 2022 [citado 08/06/2023];15:3077-3086. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC9215287/

18. Dubé-Zinatelli E, Cappelletti L, Ismail N. Vaginal Microbiome: Environmental, Biological, and Racial Influences on Gynecological Health Across the Lifespan. Am J Reprod Immunol. 2024 [citado 08/06/2023];92(6):e70026. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC11640209/

- 19.Han Y, Liu Z, Chen T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front Microbiol. 2021 [citado 08/06/2023];12:643422. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC8249587/
- 20. Vodstrcil LA, Muzny CA, Plummer EL, Sobel JD, Bradshaw CS. Bacterial vaginosis: drivers of recurrence and challenges and opportunities in partner treatment. BMC Med. 2021 [citado 08/06/2023];19(1):194. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC8411528/
- 21. Zhang F, Zhang T, Ma Y, Huang Z, He Y, Pan H, et al. Alteration of vaginal microbiota in patients with unexplained recurrent miscarriage. Exp Ther Med. 2019 [citado 10/04/2023];17(4):3307-3316. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC6447762/

- 22. Rosati D, Bruno M, Jaeger M, Ten Oever J, Netea MG. Recurrent Vulvovaginal Candidiasis: An Immunological Perspective. Microorganisms. 2020 [citado 08/06/2023];8(2):144. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC7074770/
- 23. Van Ende M, Wijnants S, Van Dijck P. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front Microbiol. 2019 [citado 08/06/2023];10:99. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6363656/
- 24. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal

colonization of Candida albicans. Sci Rep. 2019 [citado 02/08/2023];9(1):8872. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6586901/

25.Ceccarani C, Foschi C, Parolin C, D'Antuono A, Gaspari V, Consolandi C, *et al*. Diversity of vaginal microbiome and metabolome during genital infections. Sci Rep. 2019 [citado 08/06/2023];9(1):14095. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6773718/

26.Jang SJ, Lee K, Kwon B, You HJ, Ko G. Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Sci Rep. 2019 [citado 08/06/2023];9(1):8121. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6544633/

27. Borghi M, Pariano M, Solito V, Puccetti M, Bellet MM, Stincardini C, *et al*. Targeting the Aryl Hydrocarbon Receptor With Indole-3-Aldehyde Protects From Vulvovaginal Candidiasis via the IL-22-IL-18 Cross-Talk. Front Immunol. 2019 [citado 08/06/2023];10:2364. Disponible en: https://pmc.ncbi.nlm.nih.gov/articles/PMC6798081/

28.Margarita V, Fiori PL, Rappelli P. Impact of Symbiosis Between Trichomonas vaginalis and Mycoplasma hominis on Vaginal Dysbiosis: A Mini Review. Front Cell Infect Microbiol. 2020 [citado 08/06/2023];10:179. Disponible en:

https://pmc.ncbi.nlm.nih.gov/articles/PMC7226223/

29.Margarita V, Marongiu A, Diaz N, Dessì D, Fiori PL, Rappelli P. Prevalence of double-stranded RNA virus in Trichomonas vaginalis isolated in Italy and association with the symbiont Mycoplasma hominis. Parasitol Res.2019 [citado 08/06/2023];118(12):3565-3570. Disponible en: https://link.springer.com/article/10.1007/s00436-019-06469-6

Declaración de conflicto de intereses

Los autores no declaran conflicto de intereses

Contribución de autoría

Los autores participaron en igual medida en la curación de datos, análisis formal, investigación, metodología, administración del proyecto, recursos, software, supervisión, validación, visualización, redacción – borrador original y redacción – revisión y edición.

Relación entre el	microbioma	vaginal y las i	nfecciones	vaginales recurrente	s: factores	de riesgo y	enfoques	terapéuticos
emergentes								

Los artículos de la <u>Revista Correo Científico Médico</u> perteneciente a la Universidad de Ciencias Médicas de Holguín se comparten bajo los términos de la Licencia Creative Commons Atribución 4.0 Internacional Email: <u>publicaciones@infomed.sld.cu</u>